Annihilators of cohomology modules
نویسندگان
چکیده
منابع مشابه
Annihilators of Permutation Modules
Permutation modules are fundamental in the representation theory of symmetric groups Sn and their corresponding Iwahori–Hecke algebras H = H (Sn). We find an explicit combinatorial basis for the annihilator of a permutation module in the “integral” case — showing that it is a cell ideal in G.E. Murphy’s cell structure of H . The same result holds whenever H is semisimple, but may fail in the no...
متن کاملAnnihilators of tensor density modules
We describe the two-sided ideals in the universal enveloping algebras of the Lie algebras of vector fields on the line and the circle which annihilate the tensor density modules. Both of these Lie algebras contain the projective subalgebra, a copy of sl2. The restrictions of the tensor density modules to this subalgebra are duals of Verma modules (of sl2) for Vec(R) and principal series modules...
متن کاملAnnihilators of Local Cohomology in Characteristic Zero
This paper discusses the problem of whether it is possible to annihilate elements of local cohomology modules by elements of arbitrarily small order under a fixed valuation. We first discuss the general problem and its relationship to the Direct Summand Conjecture, and next present two concrete examples where annihilators with small order are shown to exist. We then prove a more general theorem...
متن کاملARTINIANNESS OF COMPOSED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring and let $fa$, $fb$ be two ideals of $R$ such that $R/({fa+fb})$ is Artinian. Let $M$, $N$ be two finitely generated $R$-modules. We prove that $H_{fb}^j(H_{fa}^t(M,N))$ is Artinian for $j=0,1$, where $t=inf{iin{mathbb{N}_0}: H_{fa}^i(M,N)$ is not finitelygenerated $}$. Also, we prove that if $DimSupp(H_{fa}^i(M,N))leq 2$, then $H_{fb}^1(H_{fa}^i(M,N))$ i...
متن کاملFiniteness of certain local cohomology modules
Cofiniteness of the generalized local cohomology modules $H^{i}_{mathfrak{a}}(M,N)$ of two $R$-modules $M$ and $N$ with respect to an ideal $mathfrak{a}$ is studied for some $i^{,}s$ witha specified property. Furthermore, Artinianness of $H^{j}_{mathfrak{b}_{0}}(H_{mathfrak{a}}^{i}(M,N))$ is investigated by using the above result, in certain graded situations, where $mathfrak{b}_{0}$ is an idea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1981
ISSN: 0021-8693
DOI: 10.1016/0021-8693(81)90135-6